
Aggregation of Data Streams in the Web of Things

Felipe Castellanos1, Mathis Goichon1, Kévin Kibongui1, Rivaldo de Souza1

1 National Institute of Applied Sciences of Lyon, Villeurbanne, France
felipe.castellanos-alvarez@insa-lyon.fr

mathis.goichon@insa-lyon.fr

kevin.kibongui@insa-lyon.fr

rivaldo.de-souza@insa-lyon.fr

Abstract. The Web of Things integrates the Internet of Things with Web tech-

nologies. Things include sensors and actuators and exchange streams of data.

Such data streams are then processed by applications. Most of the time, data

streams provide raw data that require to be aggregated to be exploitable by ap-

plications. In this PSAT project, we have studied aggregation in the context of

the CoSWoT project, where such aggregations of data streams must be comput-

able on devices of small capabilities, ie. with small memory and small pro-

cessing power.

After a state of the art, we organized our work in an agile process so as to de-

fine and implement different ways to aggregate data with techniques that ensure

to be efficient in terms of memory.

Keywords: Aggregation, Arduino, C language, Data streams

1 Introduction and Background

1.1 Preamble

The Internet of Things (IoT) is receiving a lot of public and scientific attention today.

IoT is a technology that allows us to add a device to an object (e.g. vehicles, factory

electronic systems, roofs, lighting, etc.) that can measure environmental parameters,

generate associated data and transmit them via a communication network to other

systems capable of performing actions (automatic gate, controller, smart radiator). In

recent years, IoT applications have multiplied by increasing the number of connected

objects in the world. As this trend is not sustainable in the long term with respect to

the climate issues of our time, it is important to find ways to drastically increase the

efficiency of connected objects while reducing their energy consumption. It is in this

context that our project of aggregator will serve as an embedded computer using data

received from many sensors.

2

1.2 Context

The Constrained Semantic Web of Things (CoSWoT1) project, funded by the French

Agency of Research aims to reduce the energy footprint of the Internet of Things

(IoT) by deporting a maximum of data processing to the physical objects necessary

for an application to work well (sensors, actuators, gateways) rather than in the cloud.

The CoSWoT project proposes an implementation of constrained servicing, com-

patible with the imperatives of limiting the consumption of resources on the objects.

The data sources (sensors for example) are described in RDF, a model for represent-

ing knowledge in graphs.

1.3 Problem definition

The objective of this P-SAT project is to develop an "aggregator", i.e. a module that

implements data aggregation algorithms for sensor data streams by managing time

windows. For example, this module will have to know how to make an average or

other types of aggregation of temperatures over a certain amount of time. The C lan-

guage has been chosen because this module must be able to run on small equipment,

such as Arduino Due or ESP32.

The different requirements we have for this project are:

• make a state of the art of existing aggregation algorithms, and show their specifici-

ties for use in constrained environments and on data streams,

• implement a module in charge of data aggregations according to a determined time

window. This module subscribes to data streams, aggregates these data, and pro-

duces data streams.

• develop generic aggregation algorithms (maximums, minimums, averages mini-

mums, averages...) on time windows.

• test the developed module on data produced in the smart building domain, by the

LIRIS or by the Fayol Institute of the Ecole des Mines de St Etienne.

• provide technical documentation allowing this module to be inserted into the archi-

tecture of the CoSWoT project, and to easily add new aggregation functions.

2 State of the Art

2.1 Concepts

This part defines the technical words used during the project to ensure a good under-

standing of the subject.

1 https://coswot.gitlab.io/

3

Fig. 1. Illustration of various state-of-the-art concepts relevant to aggregation algorithms

An aggregation algorithm is a method for continuously computing statistical or math-

ematical summaries of a rapidly incoming data stream. These algorithms are designed

to handle large volumes of data in real-time, without the need to store all of the data

in memory.

 An aggregation function is a specific mathematical or statistical operation that is

applied to a stream of incoming data. The goal of the function is to compute a sum-

mary of the data, such as a sum, average, minimum, or maximum value.

A servient is a software component that represents a constrained device or system in

the Internet of Things (IoT) network. It acts as an intermediary between the device

and the other components of the system. The servient is responsible for managing the

communication, data processing, and control logic of the device. The servient is de-

signed to run on resource-constrained devices, such as sensors and actuators, which

have limited computing power and memory.

 A slice is a subset of a data stream that aggregates raw values using the selected

aggregation function. Its length is fixed in a count-value aggregation (i.e in above

example, the slice length is 2), or variable in a time-based aggregation (i.e a slice can

aggregate from 1 to n raw data depending on what data is sent, it can also have an

empty value).

 A sliding window is a set of consecutive slices. In the aggregation algorithms, we

perform calculations and extract results from the sliding windows data. The length of

a sliding window is defined by the number of slices, whenever the aggregation algo-

rithm is instantiated, and it can never change throughout the window’s life. When

using the time-based strategy, considering that a slice equals for a certain amount of

time, a sliding window calculates an aggregation for a slice’s amount of time multi-

plied by the number of slides. For example, if a window includes 24 slices of an 1

hour length, then the sliding window’s duration is a day. Also, whenever a new slice

is created, it is added to the sliding window using the FIFO strategy; then, the last

slide of the window is removed, thus explaining the term “sliding”.

A partial aggregation is an aggregation defined over a subset of values that do not

represent the entirety of a sliding window. Partial aggregations are, in this context,

used in order to produce new slices. Partial aggregations are often used to reduce

memory usage or to improve performance.

A chunk is a set of consecutive raw values, however as opposed to sliding win-

dows, the values in the chunk are added but never removed. Chunks are technical

concepts used in the SBA algorithm.

4

2.2 Streaming data: definition, characteristics and aggregation

difficulties

Streaming data [9], as the name suggests, is the fact that data is generated continuous-

ly from different sources. In a traditional context, streaming data management appears

in the realm of Big Data; in which a huge amount of data is collected and processed in

real time from many different sources, all at high speed. The collected real time data

is then centralized in huge clouds with large computing power to be processed. The

problem with this approach is that, although it is efficient and above all financially

profitable, it is excessively energy and resource intensive. In our context, the objec-

tive is to minimize the use of the cloud by decentralizing as much as possible the data

processing directly on the constrained servients, exchanging real-time data continu-

ously between them using a peer-to-peer network.

Windowing [1] is an essential part of data streaming. When it comes to dealing

with an unbounded amount of data, we need to set separations between the data to be

able to process it efficiently. We are talking of an approach to break the data stream

into mini batches to apply different transformations on it. A window opens when the

first data item arrives and closes when it meets our criteria for closing a window.

Thus, the great challenge of this project is to successfully implement a solution to

process streaming data, in real time, in a constrained environment with low compu-

ting power and a very limited memory size.

2.3 Different types of aggregation for streaming data

In this section, we explain two possible classifications for aggregation functions.

First, we have invertible aggregations and non-invertible aggregations. Then we have

the distributive, algebraic and holistic aggregations. [2]

Invertible aggregations are those for which the merging function of a partial aggre-

gation has an inverse function. For example, for sum, the merging function is addi-

tion, and its inverse function is subtraction.

A non-invertible aggregation does not respect this condition. This means that once

the merge function of a partial aggregation is performed, it is impossible to perform

an inverse operation. As an example we can consider the median.

An aggregation is distributive if it would have the same result if we first split our

data in multiple partitions, aggregate them and do a global aggregation with the re-

sults obtained, or if we just do an aggregation of the entire dataset. To explain this

with an example, in sum aggregation, we can split our dataset in multiple parts and

then the result of aggregating the sum of all the subparts will be the same as the sum

of all the dataset.

Algebraic aggregations have a bounded size for partial aggregations (e.g. mean,

geometric mean). An aggregation is considered algebraic if it can be calculated by an

algebraic function with N arguments (with N a positive integer), each of them ob-

tained by applying a distributive aggregate function. The mean illustrates this type of

aggregation. If we split our dataset in N equal parts with the same amount of compo-

5

nents, we would have the same result if we calculate the mean of the whole dataset or

if we calculate the mean between the mean of every subpart of the dataset.

Holistic aggregations have an unbounded size for partial aggregations (ex: median,

quartile, percentile). We can consider an aggregation holistic if a sub-aggregate has

not a constant size, in other words we don’t have an algebraic function with N con-

stant arguments that characterizes the computation.

In Table 1, classical aggregation functions are classified according to these classes.

2.4 Algorithms for aggregation of streaming data

To build the aggregation functions defined above, we need to define which algorithms

we are going to implement. Thus, we made a state-of-the-art review of the existing

algorithms, namely PBA, SBA, SlickDeque, TwoStacks.

The Parallel Boundary Aggregator (denoted PBA) algorithm [6] was developed to

work on non-invertible aggregations that are either distributive or algebraic. In Table

1 of the classical aggregations we can see that this concerns the min and max func-

tions. In PBA, a stream is considered as a sequence of chunks having an identical

number of slices. In PBA we assume that the system is equipped with at least two

cores allowing to run two tasks in parallel. This is extremely important for the algo-

rithms to work. PBA is a constant time solution, which is achieved by maintaining

two buffers: 𝑐𝑠𝑎 (cumulative slice aggregations) and 𝑙𝑐𝑠 (left cumulative slice aggre-

gations). Generally, a 𝑐𝑠𝑎 buffer is computed through accumulating slice aggregations

from left to right inside a chunk (an array of slices), and a 𝑙𝑐𝑠 buffer from right to left.

Also it appears that with modifications, the PBA algorithm could be applied to invert-

ible functions, such as Mean for example, but more efficient algorithms might be

applied for these functions. Finally, PBA does not apply to non-invertible and holistic

functions.

The Sequential Boundary Aggregator (denoted SBA) algorithm is the non-parallel

version of PBA, which therefore uses a single thread to calculate the aggregations.

SBA follows the same procedure as PBA, except that the task of computing 𝑙𝑐𝑠 in

SBA is done in the same thread as the one that computes 𝑐𝑠𝑎 buffer. In the Implemen-

tation part of this paper we are going to explain our implementation of SBA.

The SlickDeque (Inv) algorithm [2] seems to be the most efficient state of the art

algorithm on all types of invertible aggregations. In Table 1 we can find the different

classical aggregations concerned. SlickDeque builds a shared execution plan, it in-

cludes a full list of partials augmented with their lengths and lists of queries to be

evaluated for each partial. After that, it generates a data structure initialization with a

circular array, partials and a map. The arriving partials aggregates will be inserted into

the partials array. The execution consists in a loop that continuously returns all query

results while they are expected. It loops over all ranges to answer mappings in the

answers map. SlickDeque (Inv) only works for the invertible queries, as it uses the

aggregate and an inverse operation, however a Non-Inv version of SlickDeque is also

presented in the same paper, which uses the same principles as SlickDeque (Inv), and

is designed to work on non-invertible aggregations.

6

TwoStacks [9] is another state-of-the art algorithm, whose principle is to divide the

whole sliding window into two stacks with different roles: one that tracks the earliest

part of the window, and one that tracks the latest part of the window. The result of the

aggregation takes in account every element from both sliding windows. Whenever

data is added, it is pushed onto the top of the latest stack. Then the algorithm checks

the top of the earliest stack; if its timestamp leaves the sliding window, then it is re-

moved from that stack.

The FlatFIT [3] algorithm also divides its sliding window into smaller sub-

windows, which are named buckets. Each aggregation is calculated on each bucket

separately. This is based on the principle that there should be no need to update the

aggregation on the entire window, which could be costly, so we would rather update

one bucket at a time. FlatFIT is very efficient with its memory management as it does

not use a significant amount of memory.

Furthermore, none of the algorithms presented above is able to aggregate holistic

functions (median, quartiles, top-k). The use cases of the CoSWoT project that were

formulated did not require the support of this type of aggregation, so we have chosen

not to investigate this category.

3 Retained approaches

For non-holistic non-invertible algorithms, we had multiple options. The best ones

were SlickDeque (Non-Inv), PBA/SBA and TwoStack. To choose between those, we

read through the different benchmarks in the state-of-the-art papers [6]. Those

benchmarks allowed us to conclude that PBA/SBA are the best for time and space

complexity. Unlike SlickDeque for example, PBA/SBA runs in constant time; such a

feature of PBA/SBA guarantees its performance in the worst case. Note that amor-

tized and worst-case time determine throughput and latency, respectively. Tests exe-

cuted [6] over the DEBS’12 dataset conclude that SBA, the non-parallel version of

PBA, is the fastest as long as the window size is inferior to 211. If it goes beyond 211,

then PBA becomes the fastest algorithm. In the current use cases of the project, the

volume of data to be aggregated is relatively small. For time-based, the needs ex-

pressed do not require a large window size. For count-based, the needs expressed also

require small windows. Moreover, we work on constrained servients which rarely

have several cores. Thus, for all these reasons, we have chosen to implement SBA2.

For non-holistic invertible aggregations, our options were SlickDeque (Inv),

TwoStacks and FlatFIT. We also referred to the state-of-the-art benchmarks [2],

which show that SlickDeque (Inv) is slightly faster than FlatFIT and TwoStacks

which both present very similar results. From a memory point of view, referring to

this paper [2], the non-inv SlickDeque algorithm is at least as efficient as FlatFIT and

TwoStacks. Indeed, a linear memory size of 2n is necessary for these two algorithms,

whereas SlickDeque needs 2n in the worst case, and is in constant size (2) in the best

case. Moreover, the probability of the worst case is negligible (1 in n!). We have

2 It should be noted that the technical gaps between SBA and PBA are small and that it is

possible to switch from one to the other if the needs require it.

7

therefore chosen to retain SlickDeque as the aggregation algorithm for non-holistic

invertible functions.

After analysis of the different aggregation functions and implementation algo-

rithms, here is a summary of the chosen algorithms for each aggregation function.

Table 1. List of selected aggregations with the associated algorithms.

Aggregation Name Inversible Type Algorithm

Sum Yes Distributive SlickDeque

Count Yes Distributive SlickDeque

Product Yes Distributive SlickDeque

Sum of Squares Yes Distributive SlickDeque

Average Yes Algebraic SlickDeque

Geometric Mean Yes Algebraic SlickDeque

Standard Deviation Yes Algebraic SlickDeque

Maximum No Distributive PBA

Minimum No Distributive PBA

Range No Algebraic Not implemented

Median No Holistic Not implemented

Quartiles No Holistic Not implemented

Top-K No Holistic Not implemented

4 Implementation

This part describes the implementation choices made after the theoretical study per-

formed previously. The implementation of our module is now denoted CoSA (Con-

strained Semantic Aggregator). It is important to note that we have implemented our

solution using dynamic allocation.

4.1 Software architecture

As a global view, our implementation is divided into four parts:

• aggregation functions, which define how the data should be aggregated;

• the aggregation algorithms, as described above, deal with sliding windows, in

count based or time-based modes, by aggregating the data, relying on the aggrega-

tion functions, and producing aggregated data for each window;

• the manager, which, as the name suggests, manages the aggregations, transmits the

received data to the right aggregation algorithms and retrieves the aggregated data

when they are available;

• the main function, or calling application, which is in charge of initializing the nec-

essary aggregations, receiving the data from the sensors to aggregate them and

producing the aggregated results.

8

To have a better understanding of the global functioning and the different interactions

between the four parts, we have made a simplified sequence diagram (Fig. 2 and Fig.

3). The implementation details will be presented in more detail in the following sec-

tion. For clarity we have encapsulated the aggregation algorithms (SBA and Slick-

Deque) under the name Aggregation_Algorithm. The same applies to the aggregation

functions (Min, Max, Average, Count, ...) which have been encapsulated under the

name Aggregation_Function. In our implementation we have also implemented this

abstraction to guarantee genericity. About the Calling_Application, we conceived our

solution as an independent module and therefore it can be anything (main function,

global servient, ...). The Integration on CoSWoT Project part details more about this

point.

Fig. 2. Simplified sequence diagram of our implementation - Initialization part

Fig. 2 shows the sequence for initializing our solution. Its objective is to create a set

of aggregations that will have to be performed over time. The calling application must

retrieve the various aggregations to be performed in order to add them to the Manag-

er. In our implementation we read a .json file, but in the global context of the project

this configuration should be retrieved by communicating with RDF triples. The Man-

ager takes care of instantiating the aggregations (SBA or SlickDeque) according to

the data it receives. It will then store the different aggregations and, for each known

sensor, the list of aggregations to which it belongs. The implementation details will be

described in the following section.

9

Fig. 3. Simplified sequence diagram of our implementation - Runtime part

Fig. 3 shows the sequence for the runtime, logically of infinite duration, of our solu-

tion. The objective here is to process each new data received, to check if the pro-

cessing should result in the production of a new aggregated value, and if so to pro-

duce this value.

 To be clearer, we distinguish two types of data: business data and strictly tem-

poral data. The business data are the data that are intended to be aggregated, they are

produced by sensors or other servient. Strictly temporal data are data received at regu-

lar intervals that allow us to see the passage of time, like a heartbeat.

 When a new data arrives (business or strictly temporal), we start by notifying all

the aggregations of the time it is. The time-based aggregations can then update their

window, especially if the time of the last slice is out of date. Then, if the received data

is a business data from a sensor, it is added to the set of aggregations in which the

sensor is implied. Count-based aggregations can then update their windows, especial-

ly if the current slice is full and a new one is created. Finally, we check each aggrega-

tion to ask them if they have a new aggregate result to produce; and if so we give

them a function to call. This function is defined by the Calling_Application and al-

10

lows defining a different data production method depending on the context in which

the module is used.

 In our main application, we have chosen to read the input data into a .csv file,

and the data is produced and written into another .csv file. This allowed us to test our

application (more details in the Tests section). In the final context of the CoSWoT

project, it will be needed to read data from RDF graphs, and produce new RDF

graphs. Our implementation is flexible enough to allow this.

4.2 Algorithms implementation

This part describes in detail the implementation choices we made on the main ele-

ments of our solution (Manager, SBA, SlickDeque).

Manager implementation

As seen in the previous section, the manager offers four services (excluding construc-

tor and destructor). To manage the different aggregations we used two attributes: an

aggregation collection (denoted aggregations) and a collection of sensor / aggrega-

tions pairs (denoted sensors). For the aggregations attribute, we used a HashMap with

the name of the aggregation as a key (unique value by business design) and a pointer

to the instantiated aggregation as a value. For the sensors attribute, we also used a

HashMap with as a key the name of the sensor (unique value by business design) and

as a value a LinkedList of names of aggregations in which the sensor is implied. Thus,

when a new data from a sensor is received, it is only necessary to look at the aggrega-

tions concerned by this data, and to update each of them.

 Since the language offers only a few structures in the standard libraries, the

HashTable and LinkedList codes have been implemented by ourselves, using various

online resources. We are fully aware that these choices are not the most relevant in a

constrained environment, especially for HashTables which, although efficient, waste

space unnecessarily. However, our realization was above all about the implementation

of aggregation algorithms and we have therefore privileged a more standard and effi-

cient approach than the context would impose.

 Finally, about the Manager_notifyAggregations function, some deepening is

necessary. This function allows, among other things, to notify the aggregations of the

current time, so that they can update their sliding windows. However, if no data is

received during a complete slice (or even several), this would create gaps and there

would be windows that would not be produced. For example, if a data is received and

that one skips 3 slices, there would be 3 complete windows which would not be pro-

duced and then lost. Thus, we have assumed that the manager receives at least one

value (business or temporal) per slice. This is a necessary condition for the proper

functioning of the module. This is why we made a distinction between business data

and temporal data, and why we used the image of a heartbeat.

11

Aggregator implementation

The Aggregator header file has been written to provide a structure for the aggregation

algorithms, so that the calling scripts can use every aggregation algorithm in the exact

same way, allowing genericity in the code. The services that must be provided are the

following ones:

• A pointer to a function named add, which must add a new value to the window,

and eventually add a new slice if the required conditions are met. One function

pointer weighs 8 bytes.

• A pointer to a function named get_aggregation_result, which returns the result of

the current aggregation.

• An integer named new_result, which tracks if a new slice has been created and has

not been sent to the calling script. It is set to 1 whenever a slice is created, and is

set to 0 whenever the calling script uses get_aggregation_result to retrieve the

most recent result. One integer weighs 4 bytes.

• A pointer to a function named has_new_result, which returns the content of

new_result. The calling script can use this function to decide whether it calls

get_aggregation_result or not.

• An integer named time_based, which tracks the algorithm’s aggregation strategy.

This variable is only set at the construction of the object, and never changes. If set

to 1, the aggregation strategy is time-based, otherwise it is set to 0, and the strategy

is count-based.

• An integer named timestamp, which tracks the current time in an integer. While

executing in time-based mode, the algorithm must be aware of the current time, in

order to decide when it can create slices.

• A pointer to a function named set_time, which allows the calling script to tell the

current time to the aggregator. This function must take a timestamp as a parameter.

The algorithm will then set its timestamp to the new value.

• A pointer to a function named view, which displays in the console the aggregator’s

current state.

• A pointer to a function named free, which must provide a way to completely de-

stroy the aggregator’s instance, and frees every memory it has used.

As the function pointers weigh 8 bytes and the integer variables weigh 4 bytes, the

sum of each element of the structure reaches 60 bytes. As 4 additional bytes are added

due to structure padding [7], the total size of the Aggregator structure is 64 bytes.

SBA implementation

As it is an aggregation algorithm, the SBA implementation uses the Aggregator struc-

ture, and therefore implements each of its attributes and pointers. However, it adds

some new attributes in order to function properly:

• An integer named nbSlices which memorizes the amount of slices in each window.

• Two integers named r and s which respectfully memorize the number of elements

in the window, and the number of elements in one slice. In time-based, r memoriz-

12

es the total length of the window in seconds, and s tracks the total length of one

slice in seconds.

• A double-ended queue pointer named c, which tracks the raw values that were not

added in a slice yet.

• A pointer to an array of double-ended queues named saa. Every double-ended

queue in saa represents a chunk, and aggregates slices from c. A maximum of three

chunks can be memorized at once.

• Depending on various conditions, saa can either remember the values of the slices,

or the cumulative aggregated values from right to left [6]. In an unrestricted envi-

ronment, each saa double-ended queue should’ve been divided into two different

arrays, which would be saa (slice aggregation array) and lcs (left cumulative slice

aggregations). However, those two arrays are actually never used at the same time,

which is why we can use one memory space for both. This is a 4 (size of a float) *

3 (maximum remembered chunks) * nbSlices memory save in bytes, which can

definitely be very worthy if the window size is big. Though sometimes, code opti-

misation can be at the expense of code clarity, which is the case for this specific

variable. This is part of the reason why we made sure to write a lot of documenta-

tion so the code stays clear.

• A float value named csa, which represents the right cumulative slice aggregation’s

current value. In an unrestricted environment, this would also be an array, which

saves 4 * (nbSlices - 1) bytes of memory.

• An aggregation pointer named aggreg which tracks the current aggregation func-

tion that is used by the current SBA instance. It weighs 24 bytes of memory.

As such, the total SBA structure weighs 128 bytes by itself. It also allocates 24 bytes

of memory for the aggregation algorithm, 96 bytes for the c double-ended queue and

the saa variable which both allocate 24 bytes of memory per element.

The biggest stakes we have while developing an aggregation algorithm is to match

as closely as possible the theoretical results in the paper in terms of both space and

time complexity. While implementing though, we always encounter specific con-

straints that are only relevant in the CoSWoT context, and we have to manage those

without reducing the program performance. In the paper [6], SBA is defined to theo-

retically require a total space of
(3𝑛+13)

2
, n being the number of slices. We are close to

this result practically. Removing the c double-ended is the biggest improvement we

could make in order to lessen the SBA memory usage.

Some other changes could be brought to the SBA implementation; for instance the

number of slices is not necessary to be kept in memory as we could recalculate it with

r and s, but that also uses computational power, so a choice has to be made.

SlickDeque implementation

The SlickDeque implementation also uses the Aggregator structure, to which it

adds additional attributes:

• A pointer to a Slick_Aggregation named aggreg, which similarly as SBA’s aggreg,

is the aggregation function used by the current SlickDeque instance. That aggrega-

13

tion must be able to aggregate and return a new result using the current partial re-

sult, the old value that is getting replaced, and the new value. It must also provide a

function that returns an initial value for the aggregation, for example Product’s ini-

tial value is 1.

• A pointer to a double-ended queue named buffer which contains values that have

not yet been aggregated in a slice. In the future, this variable should certainly be

removed, as we could aggregate values in a partial slice instead of memorizing

them.

• An array named partials which tracks every slice.

• An integer named width which tracks the length of the window.

• A float named result which tracks the last calculated result of the aggregation. This

result is then sent on the get_aggregation_result algorithm.

• An integer named currentPos which tracks the current position of the next value to

change in the window.

Note that the implemented Slick_Aggregations are either distributive or algebraic. If

they are algebraic, they by themselves include other distributive Slick_Aggregations

in their implementation; for example, the Average aggregation allocates memory for a

Sum and a Count aggregation.

 The paper defines the memory complexity of the SlickDeque algorithm, which

does not exceed 2n in the worst case, n being the number of slices. We only need to

memorize one dynamic array, named partials, in order to track every slice, unlike

SBA where we have multiple double-ended queues in order to store the necessary

data. On this algorithm, we also got close to the actual memory space theorized in the

papers. Similarly as SBA, the improvement we can make is to remove the double-

ended queue buffer and progressively aggregate data before creating a slice.

4.3 Integration in the CoSWoT project

The aggregator has been developed as a library and can therefore be easily integrated

into any environment. Thus, during the development and testing phase, this project

was stand-alone, which allowed progress without being impacted by the rest of the

project.

In order to be integrated in the CoSWoT project, the services proposed by the

manager must be used. In this way, it is necessary to subscribe to the different servi-

ents in order to receive the initialization data, the data collected by the sensors, and

then produce the aggregated data so that other servients can exploit them. In contrast

to the standalone mode, on the global project, data comes from other constrained ser-

vients. The communication is done through RDF [8] graphs (input and output), and it

is necessary to subscribe to the different sensors, using callback functions.

Currently, the integration with the CoSWoT project remains delicate as the com-

munication protocols and data formats are not yet clearly defined. Indeed, for the

moment the JSON-LD language is used but it should soon give way to CBOR-LD

which is more compact. Similarly, the format and production of temporal data is still

under discussion. The aggregator has been integrated as a sub-module of the CoSWoT

14

project and everything is in place for a quick integration. As soon as the above men-

tioned issues are resolved, the integration will be almost immediate. A partial integra-

tion has been done to illustrate how to use the aggregator. The current blocking points

are more business related and concern the interaction between the different modules.

5 Experimental evaluation

This part describes the test procedures we have implemented to evaluate our solution.

5.1 Tests

We consider functional testing to be an essential part of the development of CoSA. As

the aggregator must provide very precise results and never make mistakes, we have to

ensure that every test case is validated at all times. This serves as a proof that CoSA is

working properly, which reinforces confidence in our work. Testing also helps us

during development, to locate the issues we encounter. Thus, we have written numer-

ous tests over our aggregation algorithms. We had to find a way to execute proper

tests in C with a lightweight framework. For this use we chose Unity [10], which is

easy to install as it’s only composed of three files (two headers and one source), very

lightweight, simple to use, and includes features for embedded development.

We first tested both of our algorithms, SBA and SlickDeque, over multiple test

scenarios, using both count-based and time-based aggregation strategies, over various

edge cases. The tests also allow us to track the memory usage of our algorithms using

memory analysis tools. Then, we wrote acceptance tests for the Manager part, which

first retrieves the initialization files and instantiates the aggregator instances, then

receives data from the sensors, sends them to the aggregations, and finally sends the

data back to the servient. We send to the manager an initialization file in .json and a

.csv file containing all the data sent from the servient, then the manager outputs a .csv

file with its responses, and we check if that .csv file matches with another .csv file

containing the expected responses that we have generated ourselves manually. This is

a testing method that ensures that the program returns exactly what we expect it to,

and also allows us to visually check the generated results by comparing the .csv files

manually.

5.2 ESP-32

In order to evaluate the aggregation algorithms we have implemented, we have

adapted the project to an arduino target. More precisely, on an ESP32 development

module which in addition to offering basic functionalities such as mathematical calcu-

lation, reading/writing offers Wi-Fi and Bluetooth connectivity (which makes it a

connected object). In carrying out this integration, we encountered a number of prob-

lems.

Firstly, since our test benchmark is designed to support input and output files, we

had to add a plugin to our arduino IDE to be able to read and write to the files and run

15

tests (ESP32 Filesystem Uploader). Secondly, since the Arduino compiler supports

both C and C++, we had to add directives in all our header files explaining that we

have C code in our project to ensure compilation on both the computer and the ar-

duino. Thirdly, some constraints of the arduino forced us to adopt some good practic-

es. For example: when passing a variable to a function as a string, it is ideal to use a

constant to make it immutable.

The key library for our tests was SPIFFS. SPIFFS, for Serial Peripheral Interface

Flash File System, is a light file system adapted (among others) to microcontrollers

with SPI flash memory such as the ESP32 and ESP8266. The Arduino SPIFFS.h li-

brary allows to access the flash memory as if it was a normal file system like the one

of a computer (but much simpler of course). We can read, write and add data to a file

and perform some simple operations (format, rename, retrieve information...). Anoth-

er important aspect of our integration in esp32 is that in production, it is possible to

change the data source via Wi-Fi or Bluetooth.

In order to facilitate the future use of our project in Arduino, we have added some

essential files such as:

• examples/aggregator/aggregator.ino to have an Arduino example sketches;

• library.properties to configure the project as an Arduino library;

• keywords.txt to list specific keywords and other global constants if needed;

• README.md to guide future users, especially to run the tests;

• AUTHORS to cite the authors.

5.3 Memory benchmarks

The memory footprint of the SBA and SlickDeque algorithm implementation is de-

scribed here. The calculation concerns only the functioning of the algorithms them-

selves and does not consider the implementation details engendered by the rest of the

project. The tests were performed directly on an ESP32.

To evaluate the performance of the aggregator, we performed a benchmark focused

on the time cost and the memory cost. We instantiated one or more SBAs to verify

that the memory space occupied corresponds to our theoretical calculations. Then we

checked that the manager in charge of scheduling and managing several instances

(SBA and SlickDeque) worked correctly even in quasi extreme cases. We artificially

increased the input data to see if we could reach the limits of our ESP32 with a too

loaded instance or if it is only once we reach a high number of instances that the prob-

lem arises. Since the values processed are real, the algorithm also works for integers.

The float values in c range from ±1,8 ∗ 10−38 to ±3,4 ∗ 1038. Our tests are based on

values that do not exceed this range.

 In the first step we performed a test with 100 values. The initial parameters are:

a count-based aggregation, a window size of 10 values and a slice size of 2 values.

The objective of this test is to see the evolution of the memory on a standard case. We

expect to observe a maximum value of occupied memory size.

16

Fig. 4. Evolution of memory consumption - SBA Count-based 100 Values

We can see on this graph that SBA occupies 392 bytes of memory when it is empty.

In the early stage from 0 to 30 added values, we dynamically allocate memory bytes

to memorize the necessary values for SBA to work, which mainly implies filling saa

with slide values.

 When we reach the 30th added value, SBA reaches its maximum size, at which

it will plateau. This maximum is reached on the 30th value because the window has a

size of 10 values, and SBA must memorize 3 chunks in order to function properly.

SBA is thus filled at the 30th value. From there, it frees space on the saa variable,

which explains the sudden drop in memory usage. Then a new chunk is filled at the

40th value, and saa is freed again, and this cycle repeats until the program execution

stops, at which point every byte used by SBA is freed.

Then, we tested the SBA algorithm in time-based with 200 values. We have be-

tween 0 to 5 values per slice. We expect to see a curve similar to Fig. 4 with an in-

crease to a plateau value and then variations for each new slice.

Fig. 5. Evolution of memory consumption - SBA Time-based 200 Values

17

We can see in Fig. 5 that we do have an increase at the beginning of the graph, how-

ever we do not get the expected plateau value. This can be explained by the fact that

we missed an implementation detail. Indeed, when a new temporal data arrives, it is

stored and aggregated only at the end of the slice. However, the expected behavior is

that the data should be aggregated directly in a partial way in the current slice. This is

a minor issue to be fixed and will be implemented before the project is released.

After that, we realized a benchmark on the SlickDeque in order to determine its

memory usage. Our goal is to evaluate whether the SlickDeque algorithm memory

curve acts the same as the SBA ones, and to ensure that the memory usage of Slick-

Deque does plateau as planned.

Fig. 6. Evolution of memory consumption - SlickDeque Count-based 20 Values

As we planned, the memory usage of SlickDeque does plateau. Unlike PBA which

takes time to allocate the memory that it will end up using, SlickDeque immediately is

initialized at the value to which it will plateau, which is 265 bytes. SlickDeque can

never exceed this value, no matter how many values we add to it, similarly to PBA.

The only memory fluctuation that we can observe is related to SlickDeque’s usage of

a double-ended queue buffer, which allocates memory when values are added, and

frees memory when slices are created.

At last, we decided to make a final benchmark that encapsulates the whole CoSA

program. This benchmark will show the memory usage of a manager instance in ac-

tion, initialized with 10 aggregators with different window lengths, slices and types,

and 17 different data sources. This benchmark aims to reproduce as closely as possi-

ble a real use case of CoSA.

18

Fig. 7. Evolution of memory consumption - CoSA manager instance - 1500 Values

We can observe that the manager instance seems to plateau around 2000 bytes, which

shows how lightweight CoSA is. The memory that the CoSA uses is perfectly fine in

order to run it on an ESP32 with several additional modules. No matter how many

more values we add, the manager will never use more bytes than shown here.

6 Conclusion

6.1 Difficulties and evolution perspectives

Working in a constrained context is not something simple. Indeed, it imposes a rather

particular way of developing which strongly disrupts the classical programming para-

digms. Thus, a refactoring work would be necessary to get closer to an implementa-

tion that better respects the integrated standards. We are thinking in particular of our

choice to have implemented our solution based on dynamic allocation. Knowing that

we can determine in advance the size needed to perform an aggregation according to

its parameters, a static allocation would be relevant. We also believe, in view of our

implementation, that the technical gap to achieve this is rather small.

Furthermore, our current implementation does not support latency. Indeed, let's

imagine a temporal aggregation with a window ending at a time t. If a data is pro-

duced at t-1 by a sensor but arrives only at t+1 to be aggregated, it will not be consid-

ered in the window dated at t. This data, which took some time to be received, will

then be lost. To overcome this problem, a certain latency could be implemented be-

fore producing an aggregated data, allowing the late data to be aggregated in the right

window, and thus reducing the lost data. For example, a window ending at time t

could be produced only at time t+2.

Besides, the support of holistic aggregations is a relevant evolution. This would in

particular allow to support the median which is an aggregation function that can be

19

useful. It could have been possible to run SBA with a histogram to implement the

median and get an approximate value. However, in order to get a credible long term

solution, it is necessary to study the literature in order to identify and implement state

of the art algorithms that are efficient for this type of function.

Finally, to push the use cases even further, it would have been very interesting to

perform aggregations of aggregations. For example, it would be possible to collect the

minimum temperature on each floor of a building, and then to perform an average on

these minimums. Or, on the same servient, collect the average of the ambient humidi-

ty every hour, and produce a maximum of this average level once a day. Currently,

this need should be covered by the current implementation. Unfortunately, no test

could be performed due to lack of time, so it is impossible to say that it works.

6.2 Project management and results analysis

This project was managed in different ways. For group communication (internal and

with the managers) we used the Slack platform. In addition to that we had one meet-

ing per week with the project managers and another internal meeting. Those meetings

were technical or organizational. With both meetings we were able to handle the dif-

ferent tasks of the project and issues found. We used GitLab to organize the different

tasks and issues found, handle the different versions of our code and document it. As

our work is part of the larger context of the CoSWoT project, we also had to com-

municate with the other PSAT group working on the integration of the different mod-

ules.

Answering the question proposed at the beginning of this paper, we can conclude

that it is possible to reduce the energy footprint of IoT by processing the maximum

amount of data to the physical objects. To accomplish that, we need to aggregate data

in a memory efficient way because of the hardware limitations of those devices. The

way found to do that is by using the aggregations types described in this paper.

Through this project, we learned a new way of working with data. This is extreme-

ly interesting because nowadays, big data is becoming increasingly important, with

more and more computing power, resources and cloud. This project allowed us to

work in an opposite way. With the current ecological crisis, thinking about con-

strained environments becomes particularly meaningful.

Acknowledgements

We want to thank the CoSWoT ANR project for having provided the topic of this

work and data to experiment our work. We also thank the other PSAT team on

CoSWoT frugal IoT and their tutor Lionel Médini for the collaborative work we made

together. Moreover, we thank Ghislain Atemezing and Alexandre Bento for their help

throughout the project. And finally, we deeply thank Yann Gripay and Frédérique

Laforest for their tutoring and support during all the project.

20

References

1. Asif, M.H.: Windowing in Flink, https://medium.com/big-data-processing/windowing-in-

flink-8896e0fed787, last accessed 2023/01/23.

2. Shein, A. et al.: SlickDeque: High Throughput and Low Latency Incremental Sliding-

Window Aggregation, https://openproceedings.org/2018/conf/edbt/paper-197.pdf, (2018).

https://doi.org/10.5441/002/EDBT.2018.35.

3. Shein, A.U. et al.: FlatFIT: Accelerated Incremental Sliding-Window Aggregation For Re-

al-Time Analytics. In: Proceedings of the 29th International Conference on Scientific and

Statistical Database Management. pp. 1–12 Association for Computing Machinery, New

York, NY, USA (2017). https://doi.org/10.1145/3085504.3085509.

4. Tangwongsan, K. et al.: Low-Latency Sliding-Window Aggregation in Worst-Case Con-

stant Time. In: Proceedings of the 11th ACM International Conference on Distributed and

Event-based Systems. pp. 66–77 ACM, Barcelona Spain (2017).

https://doi.org/10.1145/3093742.3093925.

5. wojciech-marusarz: Challenges of Data Stream Processing: Big Data Streams 1:1,

https://nexocode.com/blog/posts/data-stream-processing-challenges/, last accessed

2023/01/23.

6. Zhang, C. et al.: Efficient Incremental Computation of Aggregations over Sliding Win-

dows. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining. pp. 2136–2144 ACM, Virtual Event Singapore (2021).

https://doi.org/10.1145/3447548.3467360.

7. Data structure alignment,

https://en.wikipedia.org/w/index.php?title=Data_structure_alignment, (2022).

8. RDF - Semantic Web Standards, https://www.w3.org/RDF/, last accessed 2023/01/23.

9. Streaming data, https://en.wikipedia.org/w/index.php?title=Streaming_data, (2022).

10. Unity, http://www.throwtheswitch.org/unity, last accessed 2023/01/23.

